4. Build and demonstrate an autoencoder network using neural layers for data compression on image dataset.
✅ Install Required Packages
pip install torch torchvision matplotlib
PROGRAM:
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
# ------------------------------
# 1. Load Dataset (MNIST)
# ------------------------------
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = torchvision.datasets.MNIST(root='./data', train=True,
download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=128, shuffle=True)
# ------------------------------
# 2. Define Autoencoder
# ------------------------------
class Autoencoder(nn.Module):
def __init__(self):
super(Autoencoder, self).__init__()
# Encoder (compression)
self.encoder = nn.Sequential(
nn.Linear(28 * 28, 128),
nn.ReLU(True),
nn.Linear(128, 64),
nn.ReLU(True),
nn.Linear(64, 32) # Compressed representation
)
# Decoder (reconstruction)
self.decoder = nn.Sequential(
nn.Linear(32, 64),
nn.ReLU(True),
nn.Linear(64, 128),
nn.ReLU(True),
nn.Linear(128, 28 * 28),
nn.Sigmoid() # output values between 0–1
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
# ------------------------------
# 3. Initialize Model
# ------------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Autoencoder().to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# ------------------------------
# 4. Training
# ------------------------------
epochs = 10
for epoch in range(epochs):
running_loss = 0.0
for images, _ in train_loader:
images = images.view(-1, 28*28).to(device) # Flatten
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, images) # Compare with original
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}/{epochs}, Loss: {running_loss/len(train_loader):.4f}")
# ------------------------------
# 5. Demonstrate Compression & Reconstruction
# ------------------------------
# Get some test images
test_dataset = torchvision.datasets.MNIST(root='./data', train=False,
download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=10, shuffle=True)
# Show original and reconstructed
model.eval()
with torch.no_grad():
images, _ = next(iter(test_loader))
images = images.view(-1, 28*28).to(device)
outputs = model(images)
# Move to CPU and reshape
images = images.view(-1, 1, 28, 28).cpu()
outputs = outputs.view(-1, 1, 28, 28).cpu()
# Plot
fig, axes = plt.subplots(2, 10, figsize=(10, 2))
for i in range(10):
# Original
axes[0][i].imshow(images[i].squeeze(), cmap='gray')
axes[0][i].axis("off")
# Reconstructed
axes[1][i].imshow(outputs[i].squeeze(), cmap='gray')
axes[1][i].axis("off")
plt.show()
OUTPUT:
Epoch 1/10, Loss: 0.0604
Epoch 2/10, Loss: 0.0303
Epoch 3/10, Loss: 0.0239
Epoch 4/10, Loss: 0.0206
Epoch 5/10, Loss: 0.0185
Epoch 6/10, Loss: 0.0171
Epoch 7/10, Loss: 0.0160
Epoch 8/10, Loss: 0.0149
Epoch 9/10, Loss: 0.0141
Epoch 10/10, Loss: 0.0134
