1. Design and implement C/C++ Program to find Minimum Cost Spanning Tree of a given connected undirected graph using Kruskal’s algorithm.
PROGRAM:
#define INF 999
#define MAX 100
int p[MAX], c[MAX][MAX], t[MAX][2];
int find(int v)
{
while (p[v])
v = p[v];
return v;
}
void union1(int i, int j)
{
p[j] = i;
}
void kruskal(int n)
{
int i, j, k, u, v, min, res1, res2, sum = 0;
for (k = 1; k < n; k++)
{
min = INF;
for (i = 1; i < n - 1; i++)
{
for (j = 1; j <= n; j++)
{
if (i == j) continue;
if (c[i][j] < min)
{
u = find(i);
v = find(j);
if (u != v)
{
res1 = i;
res2 = j;
min = c[i][j];
}
}
}
}
union1(res1, find(res2));
t[k][1] = res1;
t[k][2] = res2;
sum = sum + min;
}
printf("\nCost of spanning tree is=%d", sum);
printf("\nEdgesof spanning tree are:\n");
for (i = 1; i < n; i++)
printf("%d -> %d\n", t[i][1], t[i][2]);
}
int main()
{
int i, j, n;
printf("\nEnter the n value:");
scanf("%d", & n);
for (i = 1; i <= n; i++)
p[i] = 0;
printf("\nEnter the graph data:\n");
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
scanf("%d", & c[i][j]);
kruskal(n);
return 0;
}
OUTPUT:
Enter the n value:5
Enter the graph data:
1 3 4 6 2
1 7 6 9 3
5 2 8 99 45
1 44 66 33 6
12 4 3 2 0
Cost of spanning tree is=11
Edgesof spanning tree are:
2 -> 1
1 -> 5
3 -> 2
1 -> 4