10. Develop a program to implement k-means clustering using Wisconsin Breast Cancer data set and visualize the clustering result.
PROGRAM:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_breast_cancer
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import confusion_matrix, classification_report
data = load_breast_cancer()
X = data.data
y = data.target
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
kmeans = KMeans(n_clusters=2, random_state=42)
y_kmeans = kmeans.fit_predict(X_scaled)
print("Confusion Matrix:")
print(confusion_matrix(y, y_kmeans))
print("\nClassification Report:")
print(classification_report(y, y_kmeans))
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
df = pd.DataFrame(X_pca, columns=['PC1', 'PC2'])
df['Cluster'] = y_kmeans
df['True Label'] = y
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df, x='PC1', y='PC2', hue='Cluster', palette='Set1', s=100, edgecolor='black', alpha=0.7)
plt.title('K-Means Clustering of Breast Cancer Dataset')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(title="Cluster")
plt.show()
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df, x='PC1', y='PC2', hue='True Label', palette='coolwarm', s=100, edgecolor='black', alpha=0.7)
plt.title('True Labels of Breast Cancer Dataset')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(title="True Label")
plt.show()
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df, x='PC1', y='PC2', hue='Cluster', palette='Set1', s=100, edgecolor='black', alpha=0.7)
centers = pca.transform(kmeans.cluster_centers_)
plt.scatter(centers[:, 0], centers[:, 1], s=200, c='red', marker='X', label='Centroids')
plt.title('K-Means Clustering with Centroids')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(title="Cluster")
plt.show()
OUTPUT:



Confusion Matrix:
[[175 37]
[ 13 344]]
Classification Report:
precision recall f1-score support
0 0.93 0.83 0.88 212
1 0.90 0.96 0.93 357
accuracy 0.91 569
macro avg 0.92 0.89 0.90 569
weighted avg 0.91 0.91 0.91 569