6. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.
PROGRAM:
import numpy as np
import matplotlib.pyplot as plt
def gaussian_kernel(x, xi, tau):
return np.exp(-np.sum((x - xi) ** 2) / (2 * tau ** 2))
def locally_weighted_regression(x, X, y, tau):
m = X.shape[0]
weights = np.array([gaussian_kernel(x, X[i], tau) for i in range(m)])
W = np.diag(weights)
X_transpose_W = X.T @ W
theta = np.linalg.inv(X_transpose_W @ X) @ X_transpose_W @ y
return x @ theta
np.random.seed(42)
X = np.linspace(0, 2 * np.pi, 100)
y = np.sin(X) + 0.1 * np.random.randn(100)
X_bias = np.c_[np.ones(X.shape), X]
x_test = np.linspace(0, 2 * np.pi, 200)
x_test_bias = np.c_[np.ones(x_test.shape), x_test]
tau = 0.5
y_pred = np.array([locally_weighted_regression(xi, X_bias, y, tau) for xi in x_test_bias])
plt.figure(figsize=(10, 6))
plt.scatter(X, y, color='red', label='Training Data', alpha=0.7)
plt.plot(x_test, y_pred, color='blue', label=f'LWR Fit (tau={tau})', linewidth=2)
plt.xlabel('X', fontsize=12)
plt.ylabel('y', fontsize=12)
plt.title('Locally Weighted Regression', fontsize=14)
plt.legend(fontsize=10)
plt.grid(alpha=0.3)
plt.show()
OUTPUT:

which is data set used in this???
Like 4th Program can u provide data set for rest too..
No, this code does not use an external dataset. Instead, it generates synthetic data using NumPy.
Nice